

Questions:	Notes:
	2 Evaluating Expressions Involving Cube Roots
	Evaluate each expression. a. $2 \sqrt[3]{-216}-3=2$ \square -3 Evaluate the cube root. $=$ \square - 3 Multiply. $=$ - \square Subtract. b. $(\sqrt[3]{125})^{3}+21=$ \square $+21$ Evaluate the power using inverse operations. $=$ \square Add.
	On Your Own
	Evaluate the expression. 4. $18-4 \sqrt[3]{8}$ 5. $(\sqrt[3]{-64})^{3}+43$ 6. $5 \sqrt[3]{512}-19$
	(3) Evaluating an Algebraic Expression Evaluate $\frac{x}{4}+\sqrt[3]{\frac{x}{3}}$ when $x=192$. $\begin{aligned} \frac{x}{4}+\sqrt[3]{\frac{x}{3}} & =\frac{}{4}+\sqrt[3]{\frac{3}{3}} & & 192 \text { for } x . \\ & =+\sqrt[3]{\square} & & \text { Simplify. } \\ & =+\square & & \text { Evaluate the cube root. } \\ & =\quad & & \text { Add. } \end{aligned}$
On Your Own	

Evaluate the expression for the given value of the variable.
7. $\sqrt[3]{8 y}+y, y=64$
8. $2 b-\sqrt[3]{9 b}, b=-3$

Cornell Notes AVID Decades of College Dreams	Topic/Objective: M7 L3 Cube Roots Classwork	Name:
	8.EE.A.2: Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive	Class/Period:
	a. Evaluate square roots of perfect squares less than or equal to 225 . b. Evaluate cube roots of perfect cubes less than or equal to 1000 .	Date:
Find the cu 6. $\sqrt[3]{729}$	libe root. 7 7. $\sqrt[3]{-125}$	8. $\sqrt[3]{-1000}$
9. $\sqrt[3]{1728}$	10. $\sqrt[3]{-\frac{1}{512}}$	11. $\sqrt[3]{\frac{343}{64}}$

Evaluate the expression.

(2) 12. $18-(\sqrt[3]{27})^{3}$
13. $\left(\sqrt[3]{-\frac{1}{8}}\right)^{3}+3 \frac{3}{4}$
14. $5 \sqrt[3]{729}-24$
15. $\frac{1}{4}-2 \sqrt[3]{-\frac{1}{216}}$
16. $54+\sqrt[3]{-4096}$
17. $4 \sqrt[3]{8000}-6$

Evaluate the expression for the given value of the variable.
19. $\sqrt[3]{6 w}-w, w=288$
20. $2 d+\sqrt[3]{-45 d}, d=75$
\qquad

Find the cube root.

1. $\sqrt[3]{27}$
2. $\sqrt[3]{8}$
3. $\sqrt[3]{-64}$
4. $\sqrt[3]{-\frac{125}{216}}$

Evaluate the expression.
5. $10-(\sqrt[3]{12})^{3}$
6. $2 \sqrt[3]{512}+10$

